x !
Archived Curricula Guide 2011–2012
Curricula Guide is archieved. Please refer to current Curricula Guides
TILTA1B Basics of Mathematical Statistics 5 ECTS
Organised by
Preceding studies

Learning outcomes

Statistical ideas may be expressed most precisely and economically in mathematical terms. Contact with data and scientific inference give statistics a distictive outlook. A uniting idea is that of a statistical model.


Random variable, numerical charasteristics of a random variable, some special distributions, joint distribution of random variables, independence of random variables, moment-generating function, covariance and correlation of two random variables, transformation of random variables, the weak law of large numbers.

Teaching methods

Teaching method Contact Online
Lectures 26 h 0 h
Exercises 12 h 0 h

Teaching language


Modes of study


Numeric 1-5.

Recommended year of study

2. year autumn

Study materials

  1. Lecture notes in Finnish
  2. Casella, G., Berger, R. L., Statistical inference. Duxbury Press 2002.
  3. Hogg, R. V., Tanis, E. A., Probability and statistical inference. Prentice Hall 2001.
  4. Huuhtanen, P., Kallinen, A., Matemaattinen tilastotiede. Tampereen yliopisto 1998.
  5. Laininen, P., Todennäköisyys ja sen tilastollinen soveltaminen. Otatieto 2001.
  6. Liski, E., Matemaattinen tilastotiede. Tampereen yliopisto 2005.
  7. Tuominen, P., Todennäköisyyslaskenta I. Limes 1996.
  8. Ross, S., A first course in probability. Prentice Hall 2005.

Belongs to following study modules

School of Information Sciences
School of Information Sciences
Archived Teaching Schedule. Please refer to current Teaching Shedule.
School of Information Sciences